Wyva
Senior Member (Voting Rights)
Camille L. Birch, Brandon M. Wilk, Manavalan Gajapathy, Shaurita D. Hutchins, Gurpreet Kaur, Donna M. Brown, Tarun K. K. Mamidi, Kathleen S. Hodgin, Alp Turgut, Jarred W. Younger & Elizabeth A. Worthey
Open access (full text downloadable in PDF): https://link.springer.com/article/10.1186/s12967-025-07586-w
Abstract
Background
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling and heterogeneous disorder lacking validated biomarkers or targeted therapies. Clinical variability and elusive pathophysiology hinder progress toward effective diagnostics and treatment. Core symptoms include persistent fatigue, post-exertional malaise, unrefreshing sleep, cognitive dysfunction, and pain. We tested whether an individualized, “n-of-1” genomic and transcriptomic framework combined with comprehensive, participant-informed phenotyping could reveal molecular signatures unique to each patient.Methods
Clinical-grade whole-genome sequencing was conducted in 31 affected individuals from 25 families, with RNA-seq performed on a subset (16 affected, 7 unaffected) using blood samples. Machine-learning assisted variant triage, transcript-aware damage prediction, and expert review identified pathogenic or likely pathogenic variants in 8 of 25 probands (32%) and 12 of 31 affected individuals (39%).Results
Findings revealed marked genetic heterogeneity, including large-effect rare and more common variants. Implicated pathways included ATP generation, oxidative phosphorylation, fatty acid oxidation; regulation of glycolysis, amino acid and lipid turnover; ion and solute homeostasis; synaptic signaling, excitability, oxygen transport, and muscle integrity, resilience, and post-exertional recovery; previously implicated processes. Plausible modifiers influencing disease onset, severity, and relapsing–remitting patterns and possibly explaining intrafamilial variability and inconsistent findings across studies, were also identified. Despite gene-level diversity, downstream effects converged on impaired energy production, reduced stress resilience, and vulnerability to post-exertional metabolic failure; disruptions consistent with core ME/CFS symptoms of exertional intolerance, cognitive fog, and fatigue.Conclusions
Our findings support the hypothesis that at least a subset of ME/CFS cases represent distinct molecular disorders that converge on shared physiological pathways. Validation in larger, more diverse cohorts will be essential to test this hypothesis and establish generalizability, but increase size alone is unlikely to resolve causation in a disorder defined by rarity, heterogeneity, and molecular complexity. We suggest that progress will require experimental designs that integrate individual-level genomic data with deep, participant-informed deep phenotyping, capturing the combined effects of rare and common variants and environmental modifiers on disease expression and progression. We believe that an individualized precision medicine framework will uncover molecular drivers and modifiers of ME/CFS previously obscured by heterogeneity, enabling biologically informed stratification, improved trial design, biomarker discovery, and targeted interventions in this historically neglected condition.Open access (full text downloadable in PDF): https://link.springer.com/article/10.1186/s12967-025-07586-w