Mij
Senior Member (Voting Rights)
Researchers have new insights into the citric acid cycle: Certain bacteria can use this central metabolic pathway 'backwards', but to do so they must have very high concentrations of the enzyme citrate synthase and of carbon dioxide. This pathway may be a relic from the early development of life.
The team studied the anaerobic bacteria Hippea maritima and Desulfurella acetivorans.
The "backward cycle" that uses citrate synthase for citrate cleavage cannot be bioinformatically predicted, as it does not have the key enzymes whose presence can be used as a marker for the functioning of the pathway. Therefore, as an identifying feature for bioinformatic analyzes, the scientists used the detected high levels of citrate synthase in these bacteria's protein cocktail. Using a special analysis tool, the researchers were able to predict the production levels of individual proteins. With this trick, it was possible to predict the functioning of the "backward cycle" for inorganic carbon fixation in many anaerobic bacteria.
https://www.sciencedaily.com/releases/2021/04/210422102857.htm
The team studied the anaerobic bacteria Hippea maritima and Desulfurella acetivorans.
The "backward cycle" that uses citrate synthase for citrate cleavage cannot be bioinformatically predicted, as it does not have the key enzymes whose presence can be used as a marker for the functioning of the pathway. Therefore, as an identifying feature for bioinformatic analyzes, the scientists used the detected high levels of citrate synthase in these bacteria's protein cocktail. Using a special analysis tool, the researchers were able to predict the production levels of individual proteins. With this trick, it was possible to predict the functioning of the "backward cycle" for inorganic carbon fixation in many anaerobic bacteria.
https://www.sciencedaily.com/releases/2021/04/210422102857.htm