Identification of Novel Reproducible Combinatorial Genetic Risk Factors for Myalgic Encephalomyelitis in the DecodeME Patient Cohort and Commonalities with Long COVID
BACKGROUND
Myalgic encephalomyelitis (also known as ME/CFS or simply ME) has severely impacted the lives of tens of millions of people globally, but the disease currently has no accurate diagnostic tools or effective treatments. Identifying the biological causes of ME has proven challenging due to its wide range of symptoms and affected organs, and the lack of reproducible genetic associations across ME populations. This has prolonged misunderstanding, lack of awareness, and denial of the disease, further harming patients.
METHODS
We used the PrecisionLife combinatorial analytics platform to identify disease signatures (i.e., combinations of 1-4 SNP-genotypes) that are significantly enriched in two cohorts of ME participants from DecodeME relative to controls from UK Biobank (UKB). We tested whether the number of these signatures possessed by an individual is significantly associated with increased prevalence of ME in a third disjoint cohort of DecodeME participants. We characterized a number of drug repurposing opportunities for a set of candidate core genes whose disease signatures had the strongest association with ME and which were linked to different mechanisms. We then tested gene overlap between the ME signatures identified and previous studies in long COVID, using two independent approaches to explore these shared genetic commonalities.
RESULTS
We identified 22,411 reproducible disease signatures, comprising combinations of 7,555 unique SNPs, that are consistently associated with increased prevalence of ME in three disjoint patient cohorts. The count of reproducible signatures was significantly associated with increased prevalence of ME (p = 4x10-21), and participants with a top 10% signature count had an odds ratio of disease 1.64 times greater than participants with a bottom 10% signature count, confirming that these genetic signatures increase susceptibility for developing ME. These disease signatures map to 2,311 genes. We identified substantial overlap between the genes found by this combinatorial analysis and previous studies. We found that the 259 candidate core genes most strongly associated with ME are enriched in disease mechanisms including neurological dysregulation, inflammation, cellular stress responses and calcium signaling. We demonstrated that 76 out of 180 genes previously linked to long COVID in UKB and the US All of Us cohorts are also significantly associated with ME in the DecodeME cohort. These findings allowed identification of many existing and novel repurposing opportunities, including candidates linked to several genes with shared etiology for long COVID.
CONCLUSION
These findings provide further evidence that ME is a complex multisystemic condition where the risk of developing the disease has a very clear genetic and biological basis. They give a substantially deeper level of insight into the genetic risk factors and mechanisms involved in ME. The discovery of so many multiply reproducible genetic associations implies that ME is highly polygenic, which has important consequences for its future study and the delivery of clinical care to patients. The striking overlap in genes and mechanisms between long COVID and ME (76 / 180 long COVID genes tested) suggests the potential for development of novel or repurposed drug therapies that could be used to successfully treat either condition. However, although they share significant genetic commonalities, long COVID and ME appear to be best considered as partially overlapping but different diseases.
Web | DOI | PDF | Preprint: MedRxiv | Open Access
Jason Sardell; Sayoni Das; Matthew Pearson; Dmitry Kolobkov; Andrzej Malinowski; Leanne Fullwood; Marianna Sanna; Helen Baxter; Kelly McLellan; Michael Natt; Daphne Lamirel; Sonya Chowdhury; Amy Rochlin; Mark Strivens; Steve Gardner
BACKGROUND
Myalgic encephalomyelitis (also known as ME/CFS or simply ME) has severely impacted the lives of tens of millions of people globally, but the disease currently has no accurate diagnostic tools or effective treatments. Identifying the biological causes of ME has proven challenging due to its wide range of symptoms and affected organs, and the lack of reproducible genetic associations across ME populations. This has prolonged misunderstanding, lack of awareness, and denial of the disease, further harming patients.
METHODS
We used the PrecisionLife combinatorial analytics platform to identify disease signatures (i.e., combinations of 1-4 SNP-genotypes) that are significantly enriched in two cohorts of ME participants from DecodeME relative to controls from UK Biobank (UKB). We tested whether the number of these signatures possessed by an individual is significantly associated with increased prevalence of ME in a third disjoint cohort of DecodeME participants. We characterized a number of drug repurposing opportunities for a set of candidate core genes whose disease signatures had the strongest association with ME and which were linked to different mechanisms. We then tested gene overlap between the ME signatures identified and previous studies in long COVID, using two independent approaches to explore these shared genetic commonalities.
RESULTS
We identified 22,411 reproducible disease signatures, comprising combinations of 7,555 unique SNPs, that are consistently associated with increased prevalence of ME in three disjoint patient cohorts. The count of reproducible signatures was significantly associated with increased prevalence of ME (p = 4x10-21), and participants with a top 10% signature count had an odds ratio of disease 1.64 times greater than participants with a bottom 10% signature count, confirming that these genetic signatures increase susceptibility for developing ME. These disease signatures map to 2,311 genes. We identified substantial overlap between the genes found by this combinatorial analysis and previous studies. We found that the 259 candidate core genes most strongly associated with ME are enriched in disease mechanisms including neurological dysregulation, inflammation, cellular stress responses and calcium signaling. We demonstrated that 76 out of 180 genes previously linked to long COVID in UKB and the US All of Us cohorts are also significantly associated with ME in the DecodeME cohort. These findings allowed identification of many existing and novel repurposing opportunities, including candidates linked to several genes with shared etiology for long COVID.
CONCLUSION
These findings provide further evidence that ME is a complex multisystemic condition where the risk of developing the disease has a very clear genetic and biological basis. They give a substantially deeper level of insight into the genetic risk factors and mechanisms involved in ME. The discovery of so many multiply reproducible genetic associations implies that ME is highly polygenic, which has important consequences for its future study and the delivery of clinical care to patients. The striking overlap in genes and mechanisms between long COVID and ME (76 / 180 long COVID genes tested) suggests the potential for development of novel or repurposed drug therapies that could be used to successfully treat either condition. However, although they share significant genetic commonalities, long COVID and ME appear to be best considered as partially overlapping but different diseases.
Web | DOI | PDF | Preprint: MedRxiv | Open Access