Nightsong
Senior Member (Voting Rights)
Abstract:
Background
Post-COVID condition (PCCo) affects 5-10% of individuals following SARS-CoV-2 infection, with cognitive disturbances being a major feature. Central hypotheses regarding its pathophysiology include disturbed cell energy metabolism and oxidative stress pointing to mitochondrial dysfunction. However, brain energy metabolism remains unexplored.Methods
We investigated cerebral high-energy phosphate metabolism in 27 PCCo patients and 23 fully recovered controls using whole-brain 31P-MRSI at 3T. ATP/PCr ratios were quantified throughout the brain and analyzed with voxel-based and regional statistics including correlations with neuropsychological performance (Montreal Cognitive Assessment and Trail Making Test Part B). Statistical analysis employed voxel-wise comparisons with age as covariate, followed by region-of-interest analysis of cingulate cortex subdivisions.Results
PCCo patients showed a significant cluster of reduced ATP/PCr ratios centered on the cingulate cortex. Regional analysis revealed consistent reductions across anterior (ACC), mid- (MCC), and posterior (PCC) cingulate cortices. Lower ATP/PCr ratios in the ACC specifically correlated with poorer cognitive performance. Exploratory analyses revealed a trend toward higher intracellular pH in the MCC with significant negative correlation between pH and ATP/PCr observed only in patients, suggesting disease-specific alterations in pH regulation and bioenergetic homeostasis. Subgroup analysis showed similar metabolic alterations in PCCo patients meeting ME/CFS criteria.Conclusions
Our study provides first in vivo evidence of impaired brain energy metabolism in PCCo, with anterior cingulate dysfunction directly linked to cognitive impairment. The observed pH–ATP/PCr relationship suggests broader disruption of cellular bioenergetic regulation. These findings support mitochondrial dysfunction as a key pathophysiological mechanism and may inform targeted therapeutic strategies.Link | PDF