1. Sign our petition calling on Cochrane to withdraw their review of Exercise Therapy for CFS here.
    Dismiss Notice
  2. Guest, the 'News in Brief' for the week beginning 15th April 2024 is here.
    Dismiss Notice
  3. Welcome! To read the Core Purpose and Values of our forum, click here.
    Dismiss Notice

Functional hypoxia reduces mitochondrial calcium uptake 2024 Donnelly et al

Discussion in 'Other health news and research' started by Andy, Feb 26, 2024.

  1. Andy

    Andy Committee Member

    Messages:
    21,964
    Location:
    Hampshire, UK
    Abstract

    Mitochondrial respiration extends beyond ATP generation, with the organelle participating in many cellular and physiological processes. Parallel changes in components of the mitochondrial electron transfer system with respiration render it an appropriate hub for coordinating cellular adaption to changes in oxygen levels. How changes in respiration under functional hypoxia (i.e., when intracellular O2 levels limit mitochondrial respiration) are relayed by the electron transfer system to impact mitochondrial adaption and remodeling after hypoxic exposure remains poorly defined. This is largely due to challenges integrating findings under controlled and defined O2 levels in studies connecting functions of isolated mitochondria to humans during physical exercise.

    Here we present experiments under conditions of hypoxia in isolated mitochondria, myotubes and exercising humans. Performing steady-state respirometry with isolated mitochondria we found that oxygen limitation of respiration reduced electron flow and oxidative phosphorylation, lowered the mitochondrial membrane potential difference, and decreased mitochondrial calcium influx. Similarly, in myotubes under functional hypoxia mitochondrial calcium uptake decreased in response to sarcoplasmic reticulum calcium release for contraction. In both myotubes and human skeletal muscle this blunted mitochondrial adaptive responses and remodeling upon contractions. Our results suggest that by regulating calcium uptake the mitochondrial electron transfer system is a hub for coordinating cellular adaption under functional hypoxia.

    Open access, https://www.sciencedirect.com/science/article/pii/S2213231724000132
     

Share This Page