1. The latest crowdfunder to support David Tuller's work has opened. To donate click here.
    Dismiss Notice
  2. Guest, the 'News in Brief' for the week beginning 18th October 2021 is here.
    Dismiss Notice
  3. Welcome! To read the Core Purpose and Values of our forum, click here.
    Dismiss Notice

..assessment of heart failure with preserved ejection fraction skeletal muscle reveals differences in .. energy fuel metabolism, 2021, Zamani et al

Discussion in 'Other Health News and Research' started by Andy, May 16, 2021.

  1. Andy

    Andy Committee Member (& Outreach when energy allows)

    Hampshire, UK
    Full title: Multimodality assessment of heart failure with preserved ejection fraction skeletal muscle reveals differences in the machinery of energy fuel metabolism

    Skeletal muscle (SkM) abnormalities may impact exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF). We sought to quantify differences in SkM oxidative phosphorylation capacity (OxPhos), fibre composition, and the SkM proteome between HFpEF, hypertensive (HTN), and healthy participants.

    Methods and results
    Fifty‐nine subjects (20 healthy, 19 HTN, and 20 HFpEF) performed a maximal‐effort cardiopulmonary exercise test to define peak oxygen consumption (VO2, peak), ventilatory threshold (VT), and VO2 efficiency (ratio of total work performed to O2 consumed). SkM OxPhos was assessed using Creatine Chemical‐Exchange Saturation Transfer (CrCEST, n = 51), which quantifies unphosphorylated Cr, before and after plantar flexion exercise. The half‐time of Cr recovery (t1/2, Cr) was taken as a metric of in vivo SkM OxPhos. In a subset of subjects (healthy = 13, HTN = 9, and HFpEF = 12), percutaneous biopsy of the vastus lateralis was performed for myofibre typing, mitochondrial morphology, and proteomic and phosphoproteomic analysis. HFpEF subjects demonstrated lower VO2,peak, VT, and VO2 efficiency than either control group (all P < 0.05). The t1/2, Cr was significantly longer in HFpEF (P = 0.005), indicative of impaired SkM OxPhos, and correlated with cycle ergometry exercise parameters. HFpEF SkM contained fewer Type I myofibres (P = 0.003). Proteomic analyses demonstrated (a) reduced levels of proteins related to OxPhos that correlated with exercise capacity and (b) reduced ERK signalling in HFpEF.

    Heart failure with preserved ejection fraction patients demonstrate impaired functional capacity and SkM OxPhos. Reductions in the proportions of Type I myofibres, proteins required for OxPhos, and altered phosphorylation signalling in the SkM may contribute to exercise intolerance in HFpEF.

    Open access, https://onlinelibrary.wiley.com/doi/10.1002/ehf2.13329
    Michelle, MEMarge and alktipping like this.

Share This Page