Summary: A synthetic version of a fibupeptide, which is naturally produced by the microbiome, may help in the fight against antibiotic-resistant bacteria. Lugdunin has been shown to be effective against MRSA. The findings could help in the creation of a new class of antibiotics to treat infections currently resistant to drugs on the market.
Source: German Center for Infection Research
A research team from the Universities of Tübingen and Göttingen as well as from the German Center for Infection Research has investigated the mode of action of a new class of antibiotics that is highly effective against multidrug-resistant pathogens. The so-called fibupeptides impair the energy supply to the bacterial cell, consequently causing their death. The research findings have been published recently in the journal Angewandte Chemie.
In 2016, in a widely recognised study, a research team from Tübingen led by Prof Andreas Peschel discovered the first fibupeptide. It is produced by the microbiome itself and the scientists termed it lugdunin, naming it after Staphylococcus lugdunensis bacteria which produce the substance and reside in the mucosa of the human nose. Lugdunin has an unusual chemical structure and consequently constitutes a potential prototype for a completely new class of antibiotics. Amongst other things, it is effective against a type of methicillin-resistant bacteria called Staphylococcus aureus (MRSA), which are particularly dangerous for humans. They are particularly dreaded in hospitals where they often target immunocompromised patients. According to a study published in the journal The Lancet Infectious Diseases in November 2018, approximately 670,000 infections with multidrug-resistant pathogens with 33,000 patient deaths were recorded in the EU alone in 2015.