Could Alzheimer’s Be a Disorder of Energy Metabolism?

Andy

Retired committee member
In their study, Sonntag and Cohen analyzed the bioenergetic profiles of skin fibroblasts from LOAD patients and healthy controls, as a function of age and disease. The scientists looked at the two main components that produce energy in cells: (1) glycolysis, which is the mechanism to convert glucose into fuel molecules for consumption by mitochondria, and (2) burning of these fuels in the mitochondria, which use oxygen in a process called oxidative phosphorylation or mitochondrial respiration. The investigators found that LOAD cells exhibited impaired mitochondrial metabolism, with a reduction in molecules that are important in energy production, including nicotinamide adenine dinucleotide (NAD). LOAD fibroblasts also demonstrated a shift in energy production to glycolysis, despite an inability to increase glucose uptake in response to the insulin analog IGF-1. Both the abnormal mitochondrial metabolism and the increase of glycolysis in LOAD cells were disease- and not age-specific, while diminished glucose uptake and the inability to respond to IGF-1 was a feature of both age and disease.

“The observation that LOAD fibroblasts had a deficiency in the mitochondrial metabolic potential and an increase in the glycolytic activity to maintain energy supply is indicative of failing mitochondria and fits with current knowledge that aging cells increasingly suffer from oxidative stress that impairs their mitochondrial energy production,” said Sonntag.
Read more here - http://neurosciencenews.com/alzheimers-energy-metabolism-7827/

Open access to the paper here - https://www.nature.com/articles/s41598-017-14420-x
 
Back
Top Bottom