Amyloid-Fibrinogen Aggregates Microclots Predict Risks of Disseminated Intravascular Coagulation and Mortality
Schofield, Jeremy; Abrams, Simon Timothy; Jenkins, Rosalind; Lane, Steven; Wang, Guozheng; Toh, Cheng-Hock
Microclots have been associated with various conditions, including post-acute sequelae of SARS-CoV2 infection. They have been postulated to be amyloid-fibrin(ogen) aggregates, but their role as a prognostic biomarker remains unclear. To examine for their possible clinical utility, blood samples were collected for the first 96 hours from critically ill patients (n=104) admitted to the intensive care unit (ICU). Detection was by staining platelet-poor plasma samples with Thioflavin T and visualized by fluorescent microscopy. Image J software was trained to identify and quantify microclots, which were detected in 44 [42.3%] patients on ICU admission but not in the remaining 60 [57.7%] or in 20 healthy controls [0.0%]. Microclots on admission to ICU were associated with a primary diagnosis of sepsis (microclots present in sepsis=23/44 [52.3%] vs microclots absent in sepsis=19/60 [31.7%], P=0.044). Multicolour immunofluorescence demonstrated that microclots consisted of amyloid-fibrinogen aggregates, which was supported by proteomic analysis.
Patients with either a high number or larger-sized microclots had a higher likelihood of developing disseminated intravascular coagulation (DIC) (OR=51.4 [95% CI=6.3-6721.1], P<0.001) and had an increased probability of 28-day mortality (OR=5.3 [95% CI=2.0-15.6], P<0.001). This study concludes that microclots, as defined by amyloid-fibrin(ogen) aggregates, are potentially useful in identifying sepsis and predicting adverse coagulopathic and clinical outcomes.
KEY POINTS
Microclots are present in increased number and size in critically ill patients compared to healthy controls and are associated with sepsis.
Microclot levels measured on admission to critical care predict risks of disseminated intravascular coagulation development and mortality.
Link | PDF (Blood Advances) [Open Access]
Schofield, Jeremy; Abrams, Simon Timothy; Jenkins, Rosalind; Lane, Steven; Wang, Guozheng; Toh, Cheng-Hock
Microclots have been associated with various conditions, including post-acute sequelae of SARS-CoV2 infection. They have been postulated to be amyloid-fibrin(ogen) aggregates, but their role as a prognostic biomarker remains unclear. To examine for their possible clinical utility, blood samples were collected for the first 96 hours from critically ill patients (n=104) admitted to the intensive care unit (ICU). Detection was by staining platelet-poor plasma samples with Thioflavin T and visualized by fluorescent microscopy. Image J software was trained to identify and quantify microclots, which were detected in 44 [42.3%] patients on ICU admission but not in the remaining 60 [57.7%] or in 20 healthy controls [0.0%]. Microclots on admission to ICU were associated with a primary diagnosis of sepsis (microclots present in sepsis=23/44 [52.3%] vs microclots absent in sepsis=19/60 [31.7%], P=0.044). Multicolour immunofluorescence demonstrated that microclots consisted of amyloid-fibrinogen aggregates, which was supported by proteomic analysis.
Patients with either a high number or larger-sized microclots had a higher likelihood of developing disseminated intravascular coagulation (DIC) (OR=51.4 [95% CI=6.3-6721.1], P<0.001) and had an increased probability of 28-day mortality (OR=5.3 [95% CI=2.0-15.6], P<0.001). This study concludes that microclots, as defined by amyloid-fibrin(ogen) aggregates, are potentially useful in identifying sepsis and predicting adverse coagulopathic and clinical outcomes.
KEY POINTS
Microclots are present in increased number and size in critically ill patients compared to healthy controls and are associated with sepsis.
Microclot levels measured on admission to critical care predict risks of disseminated intravascular coagulation development and mortality.
Link | PDF (Blood Advances) [Open Access]